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THE STRESSED STATE NEAR CURVILINEAR REINFORCED ORIFICES
IN SHELLS

A. N. Guz' and G. N. Savin
ABSTRACT

Investigation of the stressed state in shells near
curvilinear orifices reinforced with thin elastic rings.
The general case 1s considered, as well as the particular
case of the stressed state of a spherical shell loaded with
a uniform internal pressure and weakened by an elliptical
orifice with a small eccentricity, the edge of this orifice
being reinforced with an elastic ring.

In reference 1 an approximate method was proposed for inwvestigating /103*
the state of stress in shells weakened by curvilinear holes whose contours had
no angular points. In the present paper, proceeding from the general formu-
lation of the problem given in reference 2 and the results of reference 1, we
investigate the state of stress in shells near curvilinear holes supported by
thin elastic rings (considered as material threads) which resist tension,
flexure and torsion.t
reference 3.

The boundary values for this case were obtained in

1. The investigation of the additional state of stress in the shell near
a curvilinear reinforced hole is reduced (refs. 2, 1) to the solution of the
equation

V2V2D — ix2Vi® =0 (1.1)

with the corresponding boundary conditions. Equation (1.1) is written in di-

mensionless coordinates referred to LI Assuming that one of the axes of

inertia for the transverse cross-section of the supported ring lies in the
nedian surface of the shell and assuming the basic assumptions of the theory
of hollow shells, the boundary conditions can be written in the form (ref. 3)

*Numbers given in margin indicate pagination in original foreign text.
We use the designations adopted in reference 1.
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where (Tn, ceny @%, U, U, w) are the components of the additional stresses
S

o0 .0

ns Ugs wO) are the components of the basic stresses

R ~0
and strains; (Tg, ceey @, U
and strains;l (Tg9)..., 5%0)) are the external loads acting on the sup- /th
porting ring; R¥ is the radius of curvature of the hole contour in the plane of
variables assocliated with the median surface of the shell; A, B and C is the
flexural rigidity of the ring with respect to two axes and the torsional
rigidity. F is the cross-section area of the ring.

Let us assume that the function
z=1"§+ ef () (z=re?, z= relv) (1.3)
in the plane of the wvariables associated with the median surface of the shell

produces a conformal transformation of an infinite plane with a circular hole

of unit radius into an infinite plane with the considered hole.2 Following
reference 1, we represent all the quantities in (1.1) and (1.2) as expansions

in series of €. Substituting these quantities into (1.2) and collecting the
coefficients in front of €j, we obtain the boundary conditions in the j-th

approximation

lye use the terminology adopted in reference 2.
2We should note that when € << 1 the shape of the hole contour may vary sub-
stantially from that of a circle.
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where Tg(j), ceny ag(j) are the expansion coefficients of the components of the

basic state of stress, (T£O)(j)) e, @io)(j)) are the expansion coeffi- Zlgi

cients for external forces which act on the ring, uo, vO and wO are the compo-
nents of the basic state of strain in the polar system of coordinates, in

which r and 6 are replaced respectively by p and v, L%J_m), . Lig_m) are

the differential operators whose form is complex and will not be presented

0) _ _(0)

heret (L7 = ... = L12 = 0); the equations and formulas for determining éj

(p, V), ng), cesy N(j), u(j) and v(j) are presented in reference 1.

(1)

lThe operators L7 3 ewey L§é) are obtained in the general form. The calcula-

tions necessary to obtain the operators for the subsequent approximations are
extremely cumbersome.
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To determine the stress components in the shell it is necessary to make
use of results presented in reference 1. TFrom (1.4) and from the equations for
Qj, u(j) and v(j), we see that in each approximation (with respect to éj) the

problem is reduced to the solution of a boundary value problem for a circular
hole in the plane (.

2, Let us consider the state of stress in a spherical shell loaded with
uniform internal pressure p and weakened by an elliptical hole with small
eccentricity and with the edges supported by an elastic ring.

For an elliptical hole we have

ro=242, e =1 1O = (2.1)

where a and b are semiaxes of the ellipse.

We shall assume that the basic state of stress of the shell is momentless;
then

Th = poh, Ty = pok, Spa = 0, G = 0, Qb =0,
pR (2.2)
on *

1—w
U =py—p—ror, ¥ =0, uw =0, p,=

We shall assume that the hole is closed with a cover of special construc-
tion, which transmits the pressure to the ring as a transverse force. We
shall assume that the variation in the transverse force along the contour has

the form

00 o
Qoo _ __Pro - e

5 = prycos 27, . .. (2.3)
We shall represent the function & (r, 6) (ref. 1) in the form
@; (’ 9) idy°In r + (ci° + P HY (r V=3 i) +
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k=1

where
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The displacements u(j> (p, Y¥) and V(J) (p, Y) are determined from the sys-
tem of equations presented in reference 1. Substituting (2.2)-(2.4) into (1.k4)

i, 2k
we obtain a system of algebraic equations for the coefficients c%’ R /106
i, 2k 5 ;
dg’ R ci’ 2k and di’ 2K In the zero approximation we arrive at the corre-

sponding problem with a circular hole of radius Tos specifically: to the prob-

lem on the stress concentration near a circular hole in a spherical shell which
is subjected to a uniform internal pressure p. The constants for the zero ap-
proximation will be

o0 — P’(‘) _ roxD hei”"% 4 (Drov — A) hei'x
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Taking into account reference 1, we obtain the following expression for
the components of the state of stress along the contour of the hole (p = 1)
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We note that T;|p=l (2.6) for the shell in the case of a circular hole

does not depend on the sphere radius R and coincides completely (ref. 4) with

Tzlp—l for a circular hole in a plate subjected to a tension pgh from all gides.

If we let R = @ in (2.6), we obtain (ref. L4) the values of the stress components



for a flat plate; if we let El = 0 or El = o (in the expressions for the ri-

gidities A, B and C, E, is contained as a multiplier), we obtain the values of

1

the stress components on the contour of a circular hole in a spherical shell
(ref. 5), which is, respectively, not supported or supported with an absolutely

rigid ring.

For a spherical shell with a radius R = 200 cm, a thickness of h = 0.2
cm, ry = 10 em, v = 0.3, vy = 0.3 and for a ring of square cross-section whose

sides are 0.1 T long, figure 1 shows the relationships (p = 1): Tz/poh
*
curve I' for the shell and the plate; 'I's/poh curve IT' for the shell; curve II

* *
for the plate; 6Gn/poh2 curve I", 6GS/poh2 curve II" as a function of the pa-

rameter o = EJ_/(El + E).

The system of algebraic equations which is used to determine the /107

1,2

1,2 1,2 1,2 . . sy s
5 s d , C-2= and d when j = 1 is not presented because it is

constants C
very bulky.
The remaining constants in (2.4) are equal to O when j = 1.

For small values of € (2.1) we limit ourselves to the zero and to the first
approximation. Taking into account the results obtained in reference 1, we
write down the expression for the values of the stress components with an accu-

racy up to €:
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Figure 1

To obtain stress-state value components for the hole contour, we must have

1 in (2.7). 0 and

I

* * * *
p The components Tn’ Ts, G and GS along the sections v =
n

m/2 with E

= 0; El/E = 2.632; E, = @ were determined for a shell and a

Y 1

ring with the following parameters: R = 200 cm, Ty = 10 ecm; h = 0.2 cm;

v = 0.3; \)l = 0.3 (\)l for the ring); a/b = 1.2; a ring of square cross-section

with a side length of 0.1 ro.

*
Figures 2-5 show the variation, respectively, in TZ/pOh, Ts/poh, /108
* 2 * .2
6Gn/poh and 6Gs/poh computed by means of equation (2.7) as a function of the

dimensionless parameter l--the distance from the contour of the hole with re-
spect to r, = (a + b)/2. The solid line pertains to a circular hole, while the

broken line pertains to an elliptical hole with v = 0. The dot~dash line per-
tains to elliptical hole with Y = T/2, and the curves designated by index I

correspond to the wvalue El = ®©, those with index ITI correspond to E /E = 2. ?32,
109

while those with index III correspond to El = 0.

7
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We can see from the graphs that even a small elliptical hole (a/b = 1.2)
has a strong effect on the stress distribution near it. When we move away a
distance of 1.5 Ty - 2 ro from the hole, the distribution of forces and moments

near the hole in the shell is very close to that of the state of stress in a
circular hole, and as we move further away it approaches a momentless state of
stress. As the rigidity of the supporting ring increases, the concentration of
forces and moments increases at the end of the minor semiaxis and at the end

of the major semiaxis.
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